
(2) * Anik Nur Handayani

(3) Heru Wahyu Herwanto

(4) Yosi Kristian

*corresponding author
AbstractManaging large and constantly evolving product catalogs is a significant challenge for e-commerce platforms, especially when visually similar products cannot be reliably distinguished using text-based methods. This study proposes a product grouping method that combines a fine-tuned EfficientNetV2M model with an adaptive Agglomerative Clustering strategy. Unlike conventional CNN-based approaches, which have limited scalability and a fixed number of clusters, the proposed method dynamically adjusts similarity thresholds and automatically forms clusters for unseen product variations. By linking deep visual feature extraction with adaptive clustering, the method enhances flexibility in handling product diversity. Experiments on the Shopee product image dataset show that it achieves a high Normalized Mutual Information (NMI) score of 0.924, outperforming standard baselines. These results demonstrate the method’s effectiveness in automating catalog organization and offer a scalable solution for inventory management and personalized recommendations in e-commerce platforms.
KeywordsProduct Grouping; E-commerce; Convolutional neural network; Agglomerative clustering; Normalized mutual information
|
DOIhttps://doi.org/10.26555/ijain.v11i3.1979 |
Article metricsAbstract views : 262 | PDF views : 70 |
Cite |
Full Text![]() |
References
[1] G. Dionysiou, K. Fouskas, and D. Karamitros, “The Impact of Covid-19 in E-Commerce. Effects on Consumer Purchase Behavior,” Springer Proc. Bus. Econ., pp. 199–210, 2021, doi: 10.1007/978-3-030-66154-0_22.
[2] W. Chmielarz, M. Zborowski, J. Xuetao, M. Atasever, and J. Szpakowska, “Covid-19 Pandemic as Sustainability Determinant of e-Commerce in the Creation of Information Society,” Procedia Comput. Sci., vol. 207, pp. 4378–4389, 2022, doi: 10.1016/j.procs.2022.09.501.
[3] N. Valstar, F. Frasincar, and G. Brauwers, “APFA: Automated product feature alignment for duplicate detection,” Expert Systems with Applications, vol. 174. Elsevier, 2021, doi: 10.1016/j.eswa.2021.114759.
[4] Z. Zhang and X. Song, “An Exploratory Study on Utilising the Web of Linked Data for Product Data Mining,” SN Comput. Sci., vol. 4, no. 1, p. 15, 2023, doi: 10.1007/s42979-022-01415-3.
[5] R. A. Asmara et al., “YOLO-based object detection performance evaluation for automatic target aimbot in first-person shooter games,” Bull. Electr. Eng. Informatics, vol. 13, no. 4, pp. 2456–2470, 2024, doi: 10.11591/eei.v13i4.6895.
[6] L. Renaningtyas, P. Dwitasari, and N. Ramadhani, “Implementing The Use of AI for Analysis and Prediction in the Fashion Industry,” Acad. Res. Community Publ., vol. 7, no. 1, 2023, doi: 10.21625/archive.v7i1.928.
[7] T. Widiyaningtyas, D. Dwi Prasetya, and H. W. Herwanto, “Time Loss Function-based Collaborative Filtering in Movie Recommender System,” Int. J. Intell. Eng. Syst., vol. 16, no. 6, pp. 1021–1030, Dec. 2023, doi: 10.22266/ijies2023.1231.84.
[8] R. A. Harianto, Y. M. Pranoto, and T. P. Gunawan, “Data Augmentation and Faster RCNN Improve Vehicle Detection and Recognition,” in 3rd 2021 East Indonesia Conference on Computer and Information Technology, EIConCIT 2021, 2021, pp. 128–133, doi: 10.1109/EIConCIT50028.2021.9431863.
[9] M. N. Mohammad, C. U. Kumari, A. S. D. Murthy, B. O. L. Jagan, and K. Saikumar, “Implementation of online and offline product selection system using FCNN deep learning: Product analysis,” Mater. Today Proc., vol. 45, pp. 2171–2178, 2021, doi: 10.1016/j.matpr.2020.10.072.
[10] M. Mousavizadeh, M. Koohikamali, M. Salehan, and D. J. Kim, “An Investigation of Peripheral and Central Cues of Online Customer Review Voting and Helpfulness through the Lens of Elaboration Likelihood Model,” Inf. Syst. Front., vol. 24, no. 1, pp. 211–231, 2022, doi: 10.1007/s10796-020-10069-6.
[11] N. Chaudhuri, G. Gupta, V. Vamsi, and I. Bose, “On the platform but will they buy? Predicting customers’ purchase behavior using deep learning,” Decis. Support Syst., vol. 149, 2021, doi: 10.1016/j.dss.2021.113622.
[12] C. Wang, “Efficient customer segmentation in digital marketing using deep learning with swarm intelligence approach,” Inf. Process. Manag., vol. 59, no. 6, p. 103085, 2022, doi: 10.1016/j.ipm.2022.103085.
[13] P. Wang, E. Fan, and P. Wang, “Comparative analysis of image classification algorithms based on traditional machine learning and deep learning,” Pattern Recognit. Lett., vol. 141, pp. 61–67, 2021, doi: 10.1016/j.patrec.2020.07.042.
[14] L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions,” J. Big Data, vol. 8, no. 1, p. 53, Mar. 2021, doi: 10.1186/s40537-021-00444-8.
[15] A. T. Hermawan, I. A. E. Zaeni, A. P. Wibawa, Gunawan, W. H. Hendrawan, and Y. Kristian, “A Multi Representation Deep Learning Approach for Epileptic Seizure Detection,” J. Robot. Control, vol. 5, no. 1, pp. 187–204, 2024, doi: 10.18196/jrc.v5i1.20870.
[16] S. Srivastava, A. V. Divekar, C. Anilkumar, I. Naik, V. Kulkarni, and V. Pattabiraman, “Comparative analysis of deep learning image detection algorithms,” J. Big Data, vol. 8, no. 1, p. 66, Dec. 2021, doi: 10.1186/s40537-021-00434-w.
[17] D. Widjojo, E. Setyati, and Y. Kristian, “Integrated Deep Learning System for Car Damage Detection and Classification Using Deep Transfer Learning,” in Proceeding - IEEE 8th Information Technology International Seminar, ITIS 2022, 2022, pp. 21–26, doi: 10.1109/ITIS57155.2022.10010292.
[18] A. T. Hermawan, I. A. E. Zaeni, A. P. Wibawa, Gunawan, N. Hartono, and Y. Kristian, “EEG-Based Lie Detection Using Autoencoder Deep Learning with Muse II Brain Sensing,” Int. J. Robot. Control Syst., vol. 4, no. 3, pp. 1403–1428, 2024, doi: 10.31763/ijrcs.v4i3.1497.
[19] I. Dagher and D. Barbara, “Facial age estimation using pre-trained CNN and transfer learning,” Multimed. Tools Appl., vol. 80, no. 13, pp. 20369–20380, 2021, doi: 10.1007/s11042-021-10739-w.
[20] I. H. Sarker, “Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions,” SN Comput. Sci., vol. 2, no. 6, p. 420, 2021, doi: 10.1007/s42979-021-00815-1.
[21] A. Mathew, P. Amudha, and S. Sivakumari, “Deep learning techniques: an overview,” Adv. Intell. Syst. Comput., vol. 1141, pp. 599–608, 2021, doi: 10.1007/978-981-15-3383-9_54.
[22] A. Hosna, E. Merry, J. Gyalmo, Z. Alom, Z. Aung, and M. A. Azim, “Transfer learning: a friendly introduction,” Journal of Big Data, vol. 9, no. 1. Springer, 2022, doi: 10.1186/s40537-022-00652-w.
[23] J. Gupta, S. Pathak, and G. Kumar, “Deep Learning (CNN) and Transfer Learning: A Review,” J. Phys. Conf. Ser., vol. 2273, no. 1, 2022, doi: 10.1088/1742-6596/2273/1/012029.
[24] Y. Kristian, L. Zaman, M. Tenoyo, and A. Jodhinata, “Advancing Guitar Chord Recognition: A Visual Method Based on Deep Convolutional Neural Networks and Deep Transfer Learning,” ECTI Transactions on Computer and Information Technology, vol. 18, no. 2. researchgate.net, pp. 235–249, 2024. [Online]. Available at: https://www.researchgate.net/publication/380532263.
[25] Y. Li, J. Ma, and Y. Zhang, “Image retrieval from remote sensing big data: A survey,” Inf. Fusion, vol. 67, pp. 94–115, Mar. 2021, doi: 10.1016/J.INFFUS.2020.10.008.
[26] Z. Fathima and S. Shariff, “Product Matching for E-commerce Platform based on Text and Image Similarity using Deep Neural Network Architecture.” Dublin, National College of Ireland, pp. 1-22, 2022. [Online]. Available at: https://norma.ncirl.ie/6292/.
[27] X. Zhang, F. Guo, T. Chen, L. Pan, G. Beliakov, and J. Wu, “A Brief Survey of Machine Learning and Deep Learning Techniques for E-Commerce Research,” Journal of Theoretical and Applied Electronic Commerce Research, vol. 18, no. 4. mdpi.com, pp. 2188–2216, 2023, doi: 10.3390/jtaer18040110.
[28] P. Shetty and S. Singh, “Hierarchical Clustering: A Survey,” Int. J. Appl. Res., vol. 7, no. 4, pp. 178–181, Apr. 2021, doi: 10.22271/allresearch.2021.v7.i4c.8484.
[29] M. R. Kumar, S. Vishnu, G. Roshen, D. N. Kumar, P. Revathi, and D. R. L. Baster, “Product Recommendation Using Collaborative Filtering and K-Means Clustering,” Proc. - Int. Conf. Comput. Power, Commun. Technol. IC2PCT 2024, pp. 1722–1728, 2024, doi: 10.1109/IC2PCT60090.2024.10486625.
[30] Suresh, “Shopee Train Images WithLabels Dataset". Retrieved June 24, 2022. [Online]. Available at: https://www.kaggle.com/datasets/dharmiksv/shopee-train-images-withlabels.
[31] L. Massaron, The Kaggle book : data analysis and machine learning for competitive data science. Packt Publishing Ltd, p. 534, 2022. [Online]. Available at: https://books.google.co.id/books/about/The_Kaggle_Book.html?id=GAVsEAAAQBAJ&redir_esc=y.
[32] N. Farliana, W. Rahmaningtyas, and R. Widhiastuti, “Development of E-commerce Management and Policy in Indonesia,” Am. J. Humanit. Soc. Sci. Res., vol. 06, no. 01, pp. 155–160, 2022. [Online]. Available at: https://www.ajhssr.com/wp-content/uploads/2022/01/N22601155160.pdf.
[33] S. Bamansoor et al., “Efficient online shopping platforms in Southeast Asia,” in 2021 2nd International Conference on Smart Computing and Electronic Enterprise: Ubiquitous, Adaptive, and Sustainable Computing Solutions for New Normal, ICSCEE 2021, 2021, pp. 164–168, doi: 10.1109/ICSCEE50312.2021.9497901.
[34] Z. Wang, L. Li, C. Zeng, S. Dong, and J. Sun, “SLBDetection-Net: Towards closed-set and open-set student learning behavior detection in smart classroom of K-12 education,” Expert Syst. Appl., vol. 260, Jan. 2025, doi: 10.1016/J.ESWA.2024.125392.
[35] A. Kapoor, A. Gulli, S. Pal, and F. Chollet, Deep learning with TensorFlow and Keras. books.google.com, p. 698, 2022. [Online]. Available at: https://ieeexplore.ieee.org/document/10162595.
[36] Y. M. Pranoto, A. N. Handayani, and Y. Kristian, “Marketplace Product Image Grouping Using Transfer Learning of Deep Convolutional Neural Network in COVID-19 Post-Pandemic Situation,” in The Spirit of Recovery, CRC Press, 2023, pp. 55–63, doi: 10.1201/9781003331674-4.
[37] P. Desai, J. Pujari, C. Sujatha, A. Kamble, and A. Kambli, “Hybrid Approach for Content-Based Image Retrieval using VGG16 Layered Architecture and SVM: An Application of Deep Learning,” SN Comput. Sci., vol. 2, no. 3, 2021, doi: 10.1007/s42979-021-00529-4.
[38] A. A. Elngar, M. Arafa, A. Fathy, B. Moustafa, and O. Mahmoud, “Image Classification Based On CNN: A Survey,” Journal of Cybersecurity and Information Management. academia.edu, p. PP. 18-50, 2021, doi: 10.54216/jcim.060102.
[39] J. S. Kumar, S. Anuar, and N. H. Hassan, “Transfer Learning based Performance Comparison of the Pre-Trained Deep Neural Networks,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 1. eprints.utm.my, pp. 797–805, 2022, doi: 10.14569/IJACSA.2022.0130193.
[40] N. Abou Baker, N. Zengeler, and U. Handmann, “A Transfer Learning Evaluation of Deep Neural Networks for Image Classification,” Machine Learning and Knowledge Extraction, vol. 4, no. 1. mdpi.com, pp. 22–41, 2022, doi: 10.3390/make4010002.
[41] C. Öztürk, M. Taşyürek, and M. U. Türkdamar, “Transfer learning and fine-tuned transfer learning methods’ effectiveness analyse in the CNN-based deep learning models,” Concurr. Comput. Pract. Exp., vol. 35, no. 4, 2023, doi: 10.1002/cpe.7542.
[42] T. Li, A. Rezaeipanah, and E. S. M. Tag El Din, “An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6, pp. 3828–3842, 2022, doi: 10.1016/j.jksuci.2022.04.010.
[43] X. Ran, Y. Xi, Y. Lu, X. Wang, and Z. Lu, “Comprehensive survey on hierarchical clustering algorithms and the recent developments,” Artif. Intell. Rev., vol. 56, no. 8, pp. 8219–8264, 2023, doi: 10.1007/s10462-022-10366-3.
[44] L. Ramos Emmendorfer and A. M. de Paula Canuto, “A generalized average linkage criterion for Hierarchical Agglomerative Clustering,” Appl. Soft Comput., vol. 100, 2021, doi: 10.1016/j.asoc.2020.106990.
[45] Y. M. Pranoto, A. N. Handayani, H. W. Herwanto, and Y. Kristian, “Optimizing Product Matching in E-Commerce with DOC2VEC: Leveraging Hierarchical Clustering Parameters Based on Product Titles,” ECTI Trans. Comput. Inf. Technol., vol. 18, no. 3, pp. 396–405, 2024, doi: 10.37936/ecti-cit.2024183.256164.
[46] I. K. Salman Al-Tameemi, M. R. Feizi-Derakhshi, S. Pashazadeh, and M. Asadpour, “Multi-Model Fusion Framework Using Deep Learning for Visual-Textual Sentiment Classification,” Comput. Mater. Contin., vol. 76, no. 2, pp. 2145–2177, Aug. 2023, doi: 10.32604/CMC.2023.040997.
[47] D. Zhang et al., “Supporting Clustering with Contrastive Learning,” NAACL-HLT 2021 - 2021 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. Proc. Conf., pp. 5419–5430, 2021, doi: 10.18653/v1/2021.naacl-main.427.
[48] J. AlShaqsi, W. Wang, O. Drogham, and R. S. Alkhawaldeh, “Quantitative and qualitative similarity measure for data clustering analysis,” Cluster Comput., pp. 14977–15002, 2024, doi: 10.1007/s10586-024-04664-4.
[49] H. Gong, Y. Li, J. Zhang, B. Zhang, and X. Wang, “A new filter feature selection algorithm for classification task by ensembling pearson correlation coefficient and mutual information,” Eng. Appl. Artif. Intell., vol. 131, p. 107865, 2024, doi: 10.1016/j.engappai.2024.107865.
[50] H. O. Velesaca, G. Bastidas, M. Rouhani, and A. D. Sappa, “Multimodal image registration techniques: a comprehensive survey,” Multimed. Tools Appl., vol. 83, no. 23, pp. 63919–63947, 2024, doi: 10.1007/s11042-023-17991-2.
[51] H. Zhou, X. Wang, and Y. Zhang, “Feature selection based on weighted conditional mutual information,” Appl. Comput. Informatics, vol. 20, no. 1–2, pp. 55–68, 2024, doi: 10.1016/j.aci.2019.12.003.
[52] X. Yang, J. Yan, Y. Cheng, and Y. Zhang, “Learning deep generative clustering via mutual information maximization,” IEEE Trans. Neural Networks Learn. Syst., pp. 6263 - 6275, 2022, doi: 10.1109/TNNLS.2021.3135375.
[53] M. Rahmanian and E. G. Mansoori, “An unsupervised gene selection method based on multivariate normalized mutual information of genes,” Chemom. Intell. Lab. Syst., vol. 222, p. 104512, 2022, doi: 10.1016/j.chemolab.2022.104512.
[54] I. M. Wiryana, S. Harmanto, A. Fauzi, I. Bil Qisthi, and Z. Nadya Utami, “Store product classification using convolutional neural network,” IAES Int. J. Artif. Intell., vol. 12, no. 3, p. 1439, Sep. 2023, doi: 10.11591/ijai.v12.i3.pp1439-1447.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571 (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
andri.pranolo.id@ieee.org (publication issues)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0