
(2) * Indrabayu Indrabayu

(3) Andani Achmad

(4) Intan Sari Areni

*corresponding author
AbstractThe current pressing issue in the downstream processing of cocoa beans in cocoa production is a strict quality control system. However, visually inspecting raw cocoa beans reveals the need for advanced technological solutions, especially in Industry 4.0. This paper introduces an innovative image-processing approach to extracting color and texture features to identify cocoa bean quality. Image acquisition involved capturing video with a data acquisition box device connected to a conveyor, resulting in image samples of Good-quality and Poor-quality of non-cutting cocoa beans dataset. Our methodology includes multifaceted advanced pre-processing, sharpening techniques, and comparative analysis of feature extraction methodologies using Hue-Saturation-Value (HSV) and Gray Level Cooccurrence Matrix (GLCM) with correlated features. This study used 15 features with the highest correlation. Machine Learning models using Support Vector Machine (SVM) with some parameter variation value alongside an RBF kernel. Some parameters were measured to compare each approach, and the results show that pre-processing without sharpening achieves better accuracy, notably with the HSV and GLCM combination reaching 0.99 accuracy. Adequate technical lighting during data acquisition is crucial for accuracy. This study sheds light on the efficacy of image processing in cocoa bean quality identification, addressing a critical gap in industrial-scale implementation of technological solutions and advancing quality control measures in the cocoa industry.
KeywordsComputer vision; Cocoa beans; Feature extraction; GLCM; HSV
|
DOIhttps://doi.org/10.26555/ijain.v11i1.1609 |
Article metricsAbstract views : 621 | PDF views : 171 |
Cite |
Full Text![]() |
References
[1] C. Beans, “Cocoa beans: Chocolate & cocoa industry quality requirements,” 2015. [Online]. Available at: https://www.icco.org/wp-content/uploads/2019/07/19.-Wednesday-Track-2-9.00-Martin-Gilmour-CAOBISCO-Guide.pdf.
[2] L. Zhinin-Vera et al., “Artificial Vision Technique to Detect and Classify Cocoa Beans,” in KeAi: Artificial Intelligence in Agriculture, I. Rojas, G. Joya, and A. Catala, Eds. Cham: Springer Nature Switzerland, 2023, pp. 217–228, doi: 10.1007/978-3-031-43078-7_18.
[3] O. Eric, R.-M. O. M. Gyening, O. Appiah, K. Takyi, and P. Appiahene, “Cocoa beans classification using enhanced image feature extraction techniques and a regularized Artificial Neural Network model,” Eng. Appl. Artif. Intell., vol. 125, p. 106736, Oct. 2023, doi: 10.1016/j.engappai.2023.106736.
[4] D. Obediencia, D. Brosas, and R. Villafuerte, “Cacao Bean Quality Assessment Procedure: A Method for Classification Process,” in Agricultural and Food Sciences, Dec. 2018, vol. 2, pp. 60–73, [Online]. Available at:https://www.semanticscholar.org/paper/Cacao-Bean-Quality-Assessment-Procedure%3A-A-Method-Brosas-Villafuerte/8b096cbd2f1d37a188491657d3449d4c54ff7e61.
[5] J. F. Lopes, V. G. T. da Costa, D. F. Barbin, L. J. P. Cruz-Tirado, V. Baeten, and S. Barbon Junior, “Deep computer vision system for cocoa classification,” Multimed. Tools Appl., vol. 81, no. 28, pp. 41059–41077, Nov. 2022, doi: 10.1007/s11042-022-13097-3.
[6] Y. Adhitya, A. Lawi, H. Hartono, and M. Mursalin, “Cocoa Beans Digital Image Classification Based On Color Features using Multiclass Ensemble Least-Squares Support Vector Machine,” 2019, doi: 10.4108/eai.20-1-2018.2281929.
[7] U. Lestari, R. A. Kumalasanti, and E. S. Wulandari, “Identifying the Quality System of Cocoa Beans to Increase Productivity Using Backpropagation Neural Network Algorithm: A Case Study at Sumber Rejeki Farmers Group, Patuk Gunung Kidul,” J. Phys. Conf. Ser., vol. 1413, no. 1, p. 012033, Nov. 2019, doi: 10.1088/1742-6596/1413/1/012033.
[8] O. S Akindipe, “The Role of Raw Material Management in Production Operations,” Int. J. Manag. Value Supply Chain., vol. 5, no. 3, pp. 37–44, Sep. 2014, doi: 10.5121/ijmvsc.2014.5303.
[9] A. Wulansari et al., “Feasibility Analysis for The Development of Integrated Coconut Industry in Tidore Islands, North Maluku,” Int. J. Food, Agric. Nat. Resour., vol. 4, no. 1, pp. 23–26, Apr. 2023, doi: 10.46676/ij-fanres.v4i1.128.
[10] N. Nurhayati, R. R. Utami, and Y. Yusdianto, “Digital Color Sensor Technology To Measure Cocoa Fermentation Level (Review),” J. Ind. Has. Perkeb., vol. 14, no. 2, p. 16, Dec. 2019, doi: 10.33104/jihp.v14i2.4656.
[11] R. Essah, D. Anand, and S. Singh, “An intelligent cocoa quality testing framework based on deep learning techniques,” Meas. Sensors, vol. 24, p. 100466, Dec. 2022, doi: 10.1016/j.measen.2022.100466.
[12] A. S. Batista, T. de F. Oliveira, I. de O. Pereira, and L. S. Santos, “Identification of cocoa bean quality by near infrared spectroscopy and multivariate modeling,” Res. Soc. Dev., vol. 10, no. 15, p. e641101522732, Nov. 2021, doi: 10.33448/rsd-v10i15.22732.
[13] K. Sánchez, J. Bacca, L. Arévalo-Sánchez, H. Arguello, and S. Castillo, “Classification of Cocoa Beans Based on their Level of Fermentation using Spectral Information,” TecnoLógicas, vol. 24, no. 50, p. e1654, Jan. 2021, doi: 10.22430/22565337.1654.
[14] P. Parra, T. Negrete, J. Llaguno, and N. Vega, “Computer Vision Techniques Applied in the Estimation of the Cocoa Beans Fermentation Grade,” in 2018 IEEE ANDESCON, Aug. 2018, pp. 1–10, doi: 10.1109/ANDESCON.2018.8564569.
[15] S. W. Sidehabi, A. Suyuti, I. S. Areni, and I. Nurtanio, “The Development of Machine Vision System for Sorting Passion Fruit using MultiClass Support Vector Machine,” J. Eng. Sci. Technol. Rev., vol. 11, no. 5, pp. 178–184, Oct. 2018, doi: 10.25103/jestr.115.23.
[16] K. Huang, S. Li, F. Cai, and R. Zhou, “Detection of Large Foreign Objects on Coal Mine Belt Conveyor Based on Improved,” Processes, vol. 11, no. 8, p. 2469, Aug. 2023, doi: 10.3390/pr11082469.
[17] L. Dai et al., “A new machine vision detection method for identifying and screening out various large foreign objects on coal belt conveyor lines,” Complex Intell. Syst., vol. 9, no. 5, pp. 5221–5234, Oct. 2023, doi: 10.1007/s40747-023-01011-9.
[18] D. Miao, Y. Wang, L. Yang, and S. Wei, “Foreign Object Detection Method of Conveyor Belt Based on Improved Nanodet,” IEEE Access, vol. 11, pp. 23046–23052, 2023, doi: 10.1109/ACCESS.2023.3253624.
[19] R. Espinal-Lanza, M. E. Perdomo, J. Sanchez-Palma, and J. L. Ordoñez-Avila, “Comparison of Deep Learning Technologies Applied to the Recognition of Defects in Cocoa Beans,” in 2023 IEEE 41st Central America and Panama Convention (CONCAPAN XLI), Nov. 2023, pp. 1–6, doi: 10.1109/CONCAPANXLI59599.2023.10517568.
[20] T. D. Pham, “Kriging-Weighted Laplacian Kernels for Grayscale Image Sharpening,” IEEE Access, vol. 10, pp. 57094–57106, 2022, doi: 10.1109/ACCESS.2022.3178607.
[21] C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020, doi: 10.1038/s41586-020-2649-2.
[22] C. Liu, X. Shu, L. Pan, J. Shi, and B. Han, “Multiscale Underwater Image Enhancement in RGB and HSV Color Spaces,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–14, 2023, doi: 10.1109/TIM.2023.3298395.
[23] W. Zhang, S. Jin, P. Zhuang, Z. Liang, and C. Li, “Underwater Image Enhancement via Piecewise Color Correction and Dual Prior Optimized Contrast Enhancement,” IEEE Signal Process. Lett., vol. 30, pp. 229–233, 2023, doi: 10.1109/LSP.2023.3255005.
[24] Y. Han, S. H. Bai, S. J. Trueman, K. Khoshelham, and W. Kämper, “Predicting the ripening time of ‘Hass’ and ‘Shepard’ avocado fruit by hyperspectral imaging,” Precis. Agric., vol. 24, no. 5, pp. 1889–1905, Oct. 2023, doi: 10.1007/s11119-023-10022-y.
[25] B. A. Maxwell, S. Singhania, H. Fryling, and H. Sun, “Log RGB Images Provide Invariance to Intensity and Color Balance Variation for Convolutional Networks.,” in BMVC, 2023, pp. 1–14, [Online]. Available at: https://papers.bmvc2023.org/0635.pdf.
[26] G. B. Satrya, I. N. A. Ramatryana, and S. Y. Shin, “Compressive Sensing of Medical Images Based on HSV Color Space,” Sensors, vol. 23, no. 5, p. 2616, Feb. 2023, doi: 10.3390/s23052616.
[27] L. Ningsih and P. Cholidhazia, “Classification Of Tomato Maturity Levels Based on RGB And HSV Colors Using KNN Algorithm,” RIGGS J. Artif. Intell. Digit. Bus., vol. 1, no. 1, pp. 25–30, Jul. 2022, doi: 10.31004/riggs.v1i1.10.
[28] P. Kobalicek and M. Bliznak, “Optimized RGB to HSV Color Conversion Using SSE Technology,” in Annals of DAAAM for 2011 & Proceedings of the 22nd International DAAAM Symposium, 2011, pp. 1591–1592, doi: 10.2507/22nd.daaam.proceedings.780.
[29] S. U. Khan, N. Islam, Z. Jan, K. Haseeb, S. I. A. Shah, and M. Hanif, “A machine learning-based approach for the segmentation and classification of malignant cells in breast cytology images using gray level co-occurrence matrix (GLCM) and support vector machine (SVM),” Neural Comput. Appl., vol. 34, no. 11, pp. 8365–8372, Jun. 2022, doi: 10.1007/s00521-021-05697-1.
[30] G. Prasad, V. S. Gaddale, R. C. Kamath, V. J. Shekaranaik, and S. P. Pai, “A Study of Dimensionality Reduction in GLCM Feature-Based Classification of Machined Surface Images,” Arab. J. Sci. Eng., vol. 49, no. 2, pp. 1531–1553, Feb. 2024, doi: 10.1007/s13369-023-07854-1.
[31] M. Yogeshwari and G. Thailambal, “Automatic feature extraction and detection of plant leaf disease using GLCM features and convolutional neural networks,” Mater. Today Proc., vol. 81, pp. 530–536, 2023, doi: 10.1016/j.matpr.2021.03.700.
[32] M. Sabha and M. Saffarini, “Selecting optimal k for K-means in image segmentation using GLCM,” Multimed. Tools Appl., vol. 83, no. 18, pp. 55587–55603, Nov. 2023, doi: 10.1007/s11042-023-17615-9.
[33] Basri, Indrabayu, A. Achmad, and I. S. Areni, “Comparison of Image Extraction Model for Cocoa Disease Fruits Attack in Support Vector Machine Classification,” in 2022 International Conference on Electrical and Information Technology (IEIT), Sep. 2022, pp. 46–51, doi: 10.1109/IEIT56384.2022.9967910.
[34] S. Barburiceanu, R. Terebes, and S. Meza, “3D Texture Feature Extraction and Classification Using GLCM and LBP-Based Descriptors,” Appl. Sci., vol. 11, no. 5, p. 2332, Mar. 2021, doi: 10.3390/app11052332.
[35] M. H. Daneshvari, E. Nourmohammadi, M. Ameri, and B. Mojaradi, “Efficient LBP-GLCM texture analysis for asphalt pavement raveling detection using eXtreme Gradient Boost,” Constr. Build. Mater., vol. 401, p. 132731, Oct. 2023, doi: 10.1016/j.conbuildmat.2023.132731.
[36] Y. Adhitya, S. W. Prakosa, M. Köppen, and J.-S. Leu, “Feature Extraction for Cocoa Bean Digital Image Classification Prediction for Smart Farming Application,” Agronomy, vol. 10, no. 11, p. 1642, Oct. 2020, doi: 10.3390/agronomy10111642.
[37] G. Bargshady, X. Zhou, R. C. Deo, J. Soar, F. Whittaker, and H. Wang, “The modeling of human facial pain intensity based on Temporal Convolutional Networks trained with video frames in HSV color space,” Appl. Soft Comput., vol. 97, p. 106805, Dec. 2020, doi: 10.1016/j.asoc.2020.106805.
[38] F. M. Sarimole and A. Rosiana, “Classification of Maturity Levels in Areca Fruit Based on HSV Image Using the KNN Method,” J. Appl. Eng. Technol. Sci., vol. 4, no. 1, pp. 64–73, Sep. 2022, doi: 10.37385/jaets.v4i1.951.
[39] F. S. Lesiangi, A. Y. Mauko, and B. S. Djahi, “Feature extraction Hue, Saturation, Value (HSV) and Gray Level Cooccurrence Matrix (GLCM) for identification of woven fabric motifs in South Central Timor Regency,” J. Phys. Conf. Ser., vol. 2017, no. 1, p. 012010, Sep. 2021, doi: 10.1088/1742-6596/2017/1/012010.
[40] D. Rajput, W.-J. Wang, and C.-C. Chen, “Evaluation of a decided sample size in machine learning applications,” BMC Bioinformatics, vol. 24, no. 1, p. 48, Feb. 2023, doi: 10.1186/s12859-023-05156-9.
[41] Indrabayu, B. Februadi, Basri, and A. Tuti, “Real-Time Classification Algorithm for Ripeness Evaluation of Cayenne Pepper Based on Enhanced Image Processing,” ICIC Express Lett. Part B Appl., vol. 15, no. 05, p. 525, 2024, [Online]. Available at: https://scholar.unhas.ac.id/en/publications/real-time-classification-algorithm-for-ripeness-evaluation-of-cay.
[42] M. Y. Shams, A. M. Elshewey, E.-S. M. El-kenawy, A. Ibrahim, F. M. Talaat, and Z. Tarek, “Water quality prediction using machine learning models based on grid search method,” Multimed. Tools Appl., vol. 83, no. 12, pp. 35307–35334, Sep. 2023, doi: 10.1007/s11042-023-16737-4.
[43] Basri, R. Tamin, Harli, Indrabayu, and I. S. Areni, “Application for Image Processing in a Receiver Operating Character-Based Testing Review,” IOP Conf. Ser. Earth Environ. Sci., vol. 1209, no. 1, p. 012030, Jul. 2023, doi: 10.1088/1755-1315/1209/1/012030.
[44] B. Basri, I. Indrabayu, A. Achmad, I. S. Areni, and F. Ramadhani, “CocoaBeansQCV,” Mendeley Data, V1, 2024, doi: 10.17632/sr279sf4hs.1.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571 (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
andri.pranolo.id@ieee.org (publication issues)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0