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1. Introduction 

Phytomorphology or plant morphology is the science of external structure, physical shape and form, 
and plants' development. It is comparative, somatically observative, especially on vegetative plant 
structures. It is concerned with analyzing ultrastructure that ranges from cytology to plant growth habit 
and its overall architecture, examining plant development. Plant morphology is valuable and useful in 
visually discriminating the classes of plants. The modern continuum morphology interrelates the 
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 Identifying the plant's developmental growth stages from seed leaf is crucial 
to understand plant science and cultivation management deeply. An 
efficient vision-based system for plant growth monitoring entails optimum 
segmentation and classification algorithms. This study presents coupled 
color-based superpixels and multifold watershed transformation in 
segmenting lettuce plant from complicated background taken from smart 
farm aquaponic system, and machine learning models used to classify 
lettuce plant growth as vegetative, head development and for harvest based 
on phytomorphological profile. Morphological computations were 
employed by feature extraction of the number of leaves, biomass area and 
perimeter, convex area, convex hull area and perimeter, major and minor 
axis lengths of the major axis length the dominant leaf, and length of plant 
skeleton. Phytomorphological variations of biomass compactness, 
convexity, solidity, plant skeleton, and perimeter ratio were included as 
inputs of the classification network. The extracted Lab color space 
information from the training image set undergoes superpixels overlaying 
with 1,000 superpixel regions employing K-means clustering on each pixel 
class. Six-level watershed transformation with distance transformation and 
minima imposition was employed to segment the lettuce plant from other 
pixel objects. The accuracy of correctly classifying the vegetative, head 
development, and harvest growth stages are 88.89%, 86.67%, and 79.63%, 
respectively. The experiment shows that the test accuracy rates of machine 
learning models were recorded as 60% for LDA, 85% for ANN, and 
88.33% for QSVM. Comparative analysis showed that QSVM bested the 
performance of optimized LDA and ANN in classifying lettuce growth 
stages.  This research developed a seamless model in segmenting vegetation 
pixels, and predicting lettuce growth stage is essential for plant 
computational phenotyping and agricultural practice optimization.  
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morphological classes of plant root, caulome for stem, phyllome for leaf and trichome for plant hair in 
generating coordinates transformed in 3D space to analyze plant architecture [1]. A plant, such as lettuce, 
has embryonic tissues that continually produce new tissues from its meristems for its development. Plant 
growth is a biological process in plants in which its structures experience maturity based on required 
inputs to its natural system. The morphological variation is primarily caused by positional effects, 
environmental effects, temperature variation exposure, and juvenility [2]. Plant proposes directional 
growth based on certain potent stimuli such as light, gravity, water, and physical contact for 
phototropism, gravitropism, hydrotropism, and thigmotropism. Lettuce plant development involves 
three distinct growth stages separated and ranged based on the number of days planted, namely, 
vegetative, head development, and harvest [3]. The vegetative growth stage starts from the sowing phase 
to the germination stage that usually takes 12 days. The Head development growth stage starts once the 
lettuce plant is transplanted as necessary, ranging from the third to sixth week of the plant life cycle. 
The harvest growth stage happens 45 to 65 days after sowing the lettuce seed. A comprehensive generic 
plant life cycle involves four stages, namely, seed germination, seed development, head development, and 
bolting harvest. The most conventional method to quantify lettuce's morphological development is using 
a scanning electron microscope [4]. Artificial light was instrumentalized to experiment morphological 
variations on lettuce [5]. The results showed that green, purple, and yellow artificial lights regulate 
biomass architecture, photosynthesis materialization, and the leaves' soluble sugar content [6]. 
Additional far-red (FR) light to mediate morphological and physiological indices of lettuce achieved 7 
to 10% increase in photosynthetic activity [7] [8]. The use of color shade nets affected the morphological 
properties by inspecting its bolting, tip burn, rib discoloration, texture, and head shape [9]. 

Smart Farming is the implementation of advanced technologies and principles of precision agriculture 
to enhance the quantity and quality of agricultural yields through adjusting farm management and 
strategy [10]–[12]. It is otherwise conceptualized in different digitalization forms as decision agriculture 
[13], precision farming [14], digital agriculture [15], Agriculture 4.0 or numerical agriculture [16]. The 
sophistication of smart Farming involves sensor-based systems, telecommunications technologies for 
advanced networking, robotics and automation, autonomous data analytics tool, drones and swarm 
intelligence, artificial intelligence, satellites, and vision-based systems [17]–[19]. These advancements in 
farm operation systems provide a precise application of farm inputs to address production problems 
predominantly on water, energy, and chemical consumptions [20]. 

Emerging vision-based system applications in smart Farming have been used in lettuce growth 
monitoring with several unresolved tests that remain an open area for research. Convincingly, machine 
vision provided advanced and innovative approaches in plant growth monitoring and assessment [3] [21], 
[22]–[24]. Current innovations still characterize unsatisfactory solutions that challenge robust 
functionality testing, especially those employed in hydroponic and aquaponic environments. There is a 
very limited number of vision systems deployed in such occluding and complicated closed-environment 
agriculture (CEA) dealing with image segmentation on plant parts image explosion [25], segmentation 
of leaf affected with the disease [26], and feature extraction [27]. Most of the published studies presented 
lettuce planted on an open field and are soil-based [28] [29]. In this study, the researchers used lettuce 
images taken from a closed-environment smart farm employing nutrient film technique (NFT) 
hydroponics setup in an aquaponic system. As implied, the plant environment is differentiative in terms 
of the objects occluded on its middle ground and background and variations in illumination [30]. The 
resolution of the camera being used is also a substantial factor, together with scale invariance, as 
concurrent issues in vision systems [31]. Leaf are index (LAI) calculation, and grid counting was 
employed for non-destructive leaf area estimation (LAE) using a digital camera [32]. Leaf shape was 
computed based on the growth pattern model [33]. 

Superpixels technique provided advances in computer vision and image preprocessing [34], 
segmentation [35], semantic labelling [36], object detection and tracking [37] and classification [38]. A 
single superpixel holds extra spatial information than regular pixels; thus, it provides a compact, 
profound, and almost exact representation of the original image's abstraction. As superpixels, it uses 
lines and curves to create focal regions that are effective in computationally demanding tasks of 
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segmentation. In this study, the superpixels technique is employed to segmentation the whole lettuce 
plant as single biomass.  

Machine learning is an advanced artificial intelligence approach in making accurate predictions and 
classifications based on historical observations. It can be done using supervised and unsupervised 
learning. Supervised learning can be further divided into two, which are classification and regression 
algorithms. Under the classification algorithms are support vector machines, discriminant analysis, Naïve 
Bayes, nearest neighbor, and neural networks. Under regression, supervised learnings are linear 
regression, ensemble methods, decision trees, and neural networks.  

Further details of the unsupervised machine learning are K-means, K-medoids, fuzzy C-means, 
hierarchical, Gaussian mixture, hidden Markov model, and types of neural networks, such as self-
organizing maps. Classification and identification are some of the most apparent and considerable aspects 
of supervised machine learning. For the most viable research, machine vision is paired with machine 
learning as it worked based on feature extraction of the most important characteristics of the object in 
focus. Machine vision and machine learning previously experimented in fresh-cut lettuce quality 
evaluation [39], change in growth features of planted lettuce [40], and plant disease detection [41][42]. 

Despite the studies mentioned above, developments and innovations, image segmentation in vision 
system and plant growth monitoring, and stage identification with optimum accuracy is still open 
research. Plant science demands better morphological analysis better to understand the physiological and 
anatomical processes of plants. On the other hand, sustainable food production, particularly lettuce and 
other leafy vegetables, necessitates intelligent vision systems to manage farm management and strategies 
better.  

This study's main objective is to identify the developmental growth stage of lettuce planted on 
hydroponics setup based on phytomorphological features. Specifically, this study aims to develop an 
algorithm on image segmentation through coupled superpixels and watershed transformations. In this 
research, morphological variation or geometric feature extractions used distance transformation, minima 
imposition, and blob operations. The optimized LDA, ANN, and SVM models were used to create 
classifying lettuce growth stage as vegetative, head development, and harvest.  

2. Method 

This section discusses the hydroponics setup, data description, and the three significant processes in 
determining a lettuce plant's growth stage, namely, image segmentation, morphological features 
extraction, and machine learning (Fig. 1).  

 

Fig. 1. Overall system architecture for lettuce growth stage identification 
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2.1. Growth bed setup 

The hydroponic setup in an aquaponic system is shown in Fig. 2 in which nutrient film technique 
was used as cultivation style. This setup is a horticultural technology that belongs to smart controlled-
environment agriculture. Four lettuce seeds are planted on a Rockwool with a size of 1 by 1 inch 
overlapped with a transparent plastic cup as a substitute to plant containers. This container is placed 
onto the hole at the top of the food-grade polyvinyl chloride (PVC) pipe. Pond water containing the 
concentrated nutrients from combined tilapia and carp effluents flow through the pipes. These nutrients' 
pH and electrical conductivity levels were maintained correctly based on the standard threshold for 
cultivating lettuce. The whole growth frame bed has three layers of growth bed. There is a total of 141 
lettuces planted on it.  Lettuce seeds were planted, germinated, and grown in this hydroponic setup 
without transplantation. Artificial lighting was employed using white LEDs, and no direct sunlight is 
allowed to expose the lettuce. The photoperiod was set to 24 hours for the vegetative stage, 21 hours to 
head development stage, and 12 hours for the harvest stage. Temperature is already maintained using 
exhaust fans. 

2.2. Dataset description 

Loose-leaf lettuce is the chosen type of lettuce to be cultivated. It can be easily harvested as a whole 
or by leaf, depending on its response to photosynthetic stimuli. The lettuce image set was gathered and 
collected in a smart lettuce farm in Rizal, Philippines, last August 2019 to October 2019. Lettuce images 
are taken using a digital camera. The system's image acquisition is vulnerable to some fundamental 
problems, such as noisy background, blurred image, Rockwool complementation, illumination, scale 
invariance, and chromatic intensity variations. Some of these problems are encountered and shown in 
Fig. 3. Moreover, 30 lettuce-captured images for every week from the first to tenth week of cultivation 
to monitor the distinct morphological growth of planted lettuce. There are 300 lettuce-captured images 
for the complete life cycle of lettuce plants that differ on crop size, plant dimensions, and its constituted 
morphological indices that are important in the vison-based system.  

 

Fig. 2. Growth bed setup for lettuce cultivation 

 

Fig. 3. Inherent vision problems for lettuce-captured 
images (a) noisy background (b) radial blurred capture 

(c) monotonous chromaticity to middle ground (d) 

illumination variations 

There are three lettuce plant growth stages, namely, vegetative, head development, and harvest. The 
vegetative growth stage has 60 images distributed, as divided into 48 of the training images and 12 for 
the testing. The head development growth stage has 150 images distributed as 120 for the training and 
30 for the testing. The lettuce ready to harvest stage has 90 images distributed as 72 for the training and 
18 for the testing. Lettuce's maturity has no significance in the color specification so that gathered 
images can be green or turning violet. The dataset focuses on the morphological or geometrical features 
of the whole lettuce plant such as the number of leaves, biomass area and perimeter, convex area, convex 

(a) (b) 

(c) (d) 
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hull (CH) area and perimeter, major and minor axis length of the biomass, major axis length of the 
dominant leaf, length of plant skeleton, biomass compactness, convexity, and solidity, and the ratio of 
plant skeleton and perimeter. Thus, there are 300 rows by 14 columns of information on the image set. 

2.3. Image segmentation 

Image segmentation is a computer vision process of partitioning an n-dimensional image into 
manifold pixel segments or image objects. This section is concerned with the detailed discussion of 
experiments done using the developed algorithm composed of coupled superpixels overlaying and 
multifold watershed transformation without thresholding to segment the whole lettuce plant, which is 
the image object in focus. Fig. 4 presents the detailed steps of the proposed image segmentation for the 
lettuce plant. Matlab language was used in developing the image processing program. Lettuce image 
passes through an image enhancement, which is chromatic aberration correction, as there is the presence 
of light intensity variation in the captured images. The resulting image is chromatically corrected and is 
passed on to RGB to CIELab conversion. Lab color space was chosen because it is the scientific color 
space that provides higher accuracy in the segmentation of complicated images. Superpixel overlays 
irregular geometrical pixels based on K-means on to the image for clustering colors. Next, image labeling 
was done to name the color clusters properly. Image filtering and smoothing provide additional 
enhancement to the image, especially to its contours. The next step is image object masking, which 
explodes each color cluster into different images. The superpixel computation, multiple watershed 
transformation, and other succeeding steps are presented separately in sections 2.3.1 and 2.3.2 for 
technical discussions. 

 

Fig. 4.  Image processing used in this research 

2.3.1 Superpixels  

Segmentation of lettuce plants was performed based on color features using superpixels and K-means 
clustering. Superpixel is a computer vision technique of overlaying a superpixel region that is a 

geometrical section of an image that is larger than the regular pixel. It is rendered based on the 

uniformity of color and brightness. Simple linear iterative clustering (SLIC) algorithm is used to improve 

the segmentation based on color clustering superimposed by K-means. The lettuce-captured images 
undergo pre-processing of image enhancement and transform into its equivalent CIELab color space 

based on Eq. (1) to (6). The L, a, and b corresponds to luminosity, chromaticity present in the red-
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green axis, and chromaticity in the blue-yellow axis, respectively. The Lab color space is derived from 

the tristimulus of XYZ values, which are RGB extrapolations. 

𝑋 =  0.412456 ∗  𝑅 +  0.357576 ∗  𝐺 +  0.180437 ∗  𝐵   

𝑌 =  0.212673 ∗  𝑅 +  0.715152 ∗  𝐺 +  0.072175 ∗  𝐵   

𝑍 =  0.019334 ∗  𝑅 +  0.715152 ∗  𝐺 +  0.072175 ∗  𝐵 

𝐿 = 116 𝑓 (𝑌/100) − 16  

𝑎 =  500 (𝑓(𝑋/95.047) –  𝑓(𝑌/100)) 

𝑏 =  200 (𝑓(𝑌/100) –  𝑓(𝑍/108.883)) 

The enhanced image is then overlaid with 50, 100, 500, and 1000 superpixel regions, n, as shown in 

Fig. 5. It is used to experiment with the most suitable number of superpixels that can manually and 

visually identify the lettuce plant and counts the number of its leaves while processing in the shortest 

time possible. Table 1 shows that 1000 superpixel regions attained 99.33% positive visual identification 
on the number of leaves with an average processing time per image of 19.45 s. However, as the number 

of superpixel regions decreases, the number of positive identifications also decreases but faster processing 

time. Despite the necessity to speed up the processing time for each image, it is more important to use 

a higher number of superpixel regions to attain higher accuracy. Thus, in this study, the employed 
number of superpixel regions is 1000. Fig. 5 shows that SLIC sections the whole digital image into 

polygonal regions, unlike the conventional rectangular pixel, based on cluster regions on local spaces. 

This resolves the edge boundaries misalignment.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.  Superpixel region boundaries overlaying and result for (a) n=50 (b) n=100 (c) n=500 (d) n=1000 

Table 1.  Number of superpixel region variations of visual identification and processing time 

No. of superpixel 

regions 
Positive identification Negative identification 

Computing time per image 
(s) 

50 9 291 3.44 

100 211 89 5.92 

500 286 14 11.61 

1000 298 2 19.45 

(a)                                             (b)                                                 (c)                                              (d) 
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Next, K-means clustering with mean RGB color was implemented to similar group objects based on 
luminosity and chromaticity (Fig. 6) into several k mutually separated clusters. In this study, K-means 
clustering was set to repeat three times to avoid local minima so that object assignment is based on the 
nearest centroid for each cluster iteration. The subsequent superpixel RGB image undergoes image 
labeling. Based on experiments, the number of colors and the maximum number of masks for labeling 
that is suitable for the working image set are 15, 10, 5, and 3 for week 1, week 2, weeks 3 to 7, and weeks 
8 to 10 of the lettuce life cycle, respectively. These dominant color preset variations correspond to the 
developmental changes of the lettuce plant's color feature as it matures. After masking, the image 
undergoes removal of disconnected regions with less than 1000 pixels and image filtering, retaining only 
the largest image object, which is the canopy of lettuce. Then, the segmented image is smoothened 
using a morphological flat structuring element.  

 

 

 

 

 

 

 

Fig. 6.  CIELab thresholds after superpixel computation and K-mean clustering (a) L (b) a (c) b  

2.3.2 Multifold watershed transformation 

Multifold watershed transformation fine-tuned the superpixel segmentation by exploring the 
watershed ridgelines in a digital image. This concept is materialized when the algorithm considers light 
pixels in the image as high elevations and dark pixels for low elevations. In this study, a 6-level watershed 
transformation is employed to enhance the segmentation of lettuce further.  

The smoothened segmented image is masked over the original image by label overlaying. Next, the 
overlaid 2D image was skeletonized by reducing the image object to a 1-pixel wide line. This protects 
the original topology and the Euler number of the image object in focus by isolating the centerline of 
the binary image. The skeletonized image undergoes edge localization based on pixel intensity using the 
Sobel method that detects edges for all quadrantal angles. Following the detection is the first watershed 
transformation that segments each lettuce leaf. Still, few small noises are present up to this stage; thus, 
image cleaning of objects less than 50 pixels is removed. The image is then subjected to the Euclidean 
distance transform of a single-pixel to its nearest neighboring positively valued pixel. After this, the 
image undergoes the second watershed transformation to fully segment the lettuce image through the 
Euclidean distance transform curves. Then, the thin lines are extended up to 80 pixels for cell centroids 
superimposition (CCS). CCS is performed through extended minima transform that computes the 
regional minima of constant intensity pixel boundaries. The Euclidean distance transformed image is 
altered by using morphological reconstruction imposition to attain minima on its boundary regions. 
Then, the third watershed transform is employed on the minima-imposed image. Another Euclidean 
distance transform was added to increase the solidity of the pixel boundaries. Then, the fourth watershed 
transformation subjects the complement distance transform the image by setting pixels to 0 for all 
sections outside the region of interest (ROI). This watershed transformation used 8-connect two-
dimensional connectivities. Another Euclidean distance transform was added to enhance the solidity of 
pixels further, and then, the fifth watershed transformation was employed. The ridgeline segmentation 
used the last binary image. For the last phase, a repetition of CCS was done but for the binary image. 
Lastly, the sixth watershed transformation was overlaid to mask the original image and produce the 
ROI's replica. The result of the sixth watershed transformation is the segmented lettuce pixels, as shown 
in Fig. 7. 

                  (a)                                                                    (b)                                                                     (c) 
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Fig. 7.  Watershed transformations (a) first (b) second (c) third (d) fourth (e) fifth (f) sixth; and (g) segmented 

lettuce pixels 

2.4. Morphological feature extraction 

The morphological feature extraction employs the practicality of quantifying and observing the 
phytomorphological variations of lettuce plants based on the image morphological profile (IMP). 
Mathematically, morphological extraction is a method that performs erosion for opening the pixels and 
dilation for closing the pixels by applying it to pre-known regions called the structuring element (SE). 

In this study, decision boundary feature extraction (DBFE) was employed instead of discriminant 
analysis feature extraction (DAFE) as it complements the boundary set by the previous step, which is 
dominantly done by superpixel ridge lines segmentation. Distance transform and minima imposition are 
both used to enhance the solidity of pixel geometry. After the pixels of ROI were segmented from the 
background, the masked image undergoes blob operations to remove extra objects that were not 
eliminated from image processing. This is to assure that the morphological features that will be extracted 
using region properties are true. Next, the image was employed with region properties computation for 
segmented leaf and whole biomass, and convex hull generation and flood-fill operation for whole biomass 
properties. The convex hull operation used the union method, which considers the foreground ROI, the 
lettuce pixels, as a single image object. It is otherwise termed as a convex envelope as it resembles a 
polygon that encloses all points derived from the image object ROI. This accounts that all points are 
located either on the interior or boundary of the enclosed convex hull. The 4-connected pixels value was 
set for flood-fill operation. The extracted phytomorphological features are the number of leaves, biomass 
area and perimeter, convex area, convex hull area and perimeter, major and minor axis length of the 
biomass, major axis length of the dominant leaf, length of plant skeleton, biomass compactness, 
convexity, and solidity, and the ratio of plant skeleton and perimeter. 

2.5.  Machine learning models 

Machine learning models are analogous to functions that provide predictions from a given particular 

input. In the development of lettuce growth stage identification models, three approaches were used, 

namely: linear discriminant analysis (LDA), artificial neural network (ANN), and quadratic support 
vector machine (QSVM). For all models, 240 rows of input data are set for training and the other 60 are 

set for testing. These models were developed using the Matlab platform. LDA, ANN and QVSM were 

selected as these models maximizes its pattern recognition to discriminate classes of data which is 

necessary for this study. Linear and nonlinear clustering is the strength of these models.  

2.5.1. Linear discriminant analysis 

Linear discriminant analysis is a supervised machine learning model which generalizes the Fisher's 

linear discriminant used to recognize patterns for classification and dimensional reduction. It is otherwise 

              (a)                                               (b)                                                 (c)                                              (d) 

              (e)                                               (f)                                                 (g) 
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known as normal discriminant analysis (NDA). It transforms one specific dependent variable or predictor 
as a linear combination with other predictors, thus characterizing distinct object classes. LDA also shows 

that it can separate linearly and non-linearly complicated data. It is a highly intelligent machine learning 

model for classification predictive problems. To prepare data for LDA, classify the problem, employ 

Gaussian distribution, remove outliers, and assume the same variance for each input variable. LDA uses 
Bayes theorem in estimating the demarcation of each class. The equation below shows the approximation 

of output class (k) with input (x) and the probability (P) of specific data fitting to each class (Y).  

𝑃(𝑌 = 𝑥|𝑋 = 𝑥)  =  (𝑃|𝑘 ∗  𝑓𝑘(𝑥)) / 𝑠𝑢𝑚(𝑃 ∗  𝑓(𝑥))  

In this study, linear discriminant analysis was furtherly employed such that the quadratic discriminant 

analysis (QDA) performed with an accuracy of 65.8%, making it non-considerable for classification of 

this type of image set. The developed LDA has a full covariance structure with the deduction of principal 
component analysis (PCA) phase and 10-fold stratified cross-validation to avoid overfitting. The 

developed model has a prediction speed of approximately 1800 obs/s and a training time of 28.854 s for 

parallel pooling connection to 6 workers.  

2.5.2 Artificial neural network 

The artificial neural network is based on computational biology used to perform prediction, 

supervised and unsupervised classification, and pattern recognition [43] [44]. The raw inputs to the 

neural network work like synapses and are activated by a certain threshold that is then multiplied to its 

arbitrary weight [45]. Simply, ANN learns based on the input and output through backpropagation. A 
shallow neural network is considered the simplest type of ANN, which has a single hidden layer 

composed of multiple artificial neurons. This model initially goes through a training phase in which a 

certain percentage of the total dataset is inputted into its system for it to learn. The training phase 

constitutes the unoptimized state of the model. Then, by adjusting its hyperparameters such as the 
number of hidden layers and neurons, the model's learning classifier provides higher accuracy. An 

activation (a) was set to correspond to the input layer. For the feedforward phase, a function z = w.a + b 

is computed for each layer. This is a measure of combined weight and activation with bias. The output 

error is then computed and backpropagated for each layer using the function z. Lastly, the output is 

then calculated using gradient descent or other classifiers for that neuron's weight and bias.  

In this study, a three-layer feedforward neural network was developed with 14 input neurons on the 

first layer, 20 artificial neurons on the hidden second layer, and three artificial neurons on the output 

layer. A backpropagation algorithm was used for network learning. The number of hidden artificial 
neurons was characterized based on three network determinants, which are cross-entropy (CE) value, 

regression coefficient (R), and processing time, which are factors in modeling the optimized neural 

network. Dual binary digit representation was used for output value representation.  

2.5.3 Quadratic support vector machine 

The support vector machine is considered a controlled machine learning model and a discriminative 

classifier that is basically used for regression and classification problems. It employs supervised learning 

by dividing an optimal hyperplane into a number of categories based on the labeled training data [46]. 

SVM determines the optimal solution in separating the hyperplane using its support vectors, which are 
the data points closest to the hyperplane. Usually, these closest data points exhibit the optimum location 

of separation for classification. The equation below forms the decision surface plane in discriminating 

data classes where wT is the transposed weight factor, x is the input vector, and b is bias. For QSVM, 

the function to be employed in discriminating the boundary of classes is quadratic; that is why the surface 

is a paraboloid with a single global minimum. 

𝑤𝑇𝑥 +  𝑏 =  0  
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 In this study, the quadratic support vector machine (QSVM) was further employed because linear, 

cubic, fine Gaussian, medium Gaussian, and coarse gaussian SVM models attained lower training 

accuracy 82.1%, 85.8%, 83.8%, 85.4%, and 75.8% respectively. The developed QSVM has quadratic 

kernel function, automatic kernel scale, box constraint level of 1, one-vs-one multiclass method, and 
10-fold stratified cross-validation to avoid overfitting. The developed model has a prediction speed of 

approximately 1300 obs/s and a training time of 7.321 s for parallel pooling connected to 6 workers. 

3. Results and Discussion 

3.1. Image segmentation 

Fig. 8 shows the sample results of the proposed segmentation for each lettuce growth stage. Region 
boundaries were computed using 1000 superpixels. Lettuce plant pixels were classified based on 
luminosity and chromaticity. It is noticeable that the image pertaining to the object in the ROI cluster 
for head development shows black pixels along the ridgeline of the largest leaf. The original green lettuce 
pixels were converted to black due to illumination. The lettuce's edge information in the original image 
was carefully clustered and preserved due to enough superpixel regions. The superpixels grouped the 
ROI into white pixels after the sixth watershed transformation, and the ROI lettuce image object was 
segmented.  

 

Fig. 8.  Lettuce ROI segmentation for (a) vegetative (b) head development and (c) for harvest growth stages 

3.2. Phytomorphological feature extraction 

Table 2 summarized the descriptive statistics of phytomorphological features of the 300 sample 
images, where Q1 represents the vegetative to head development threshold for each feature, and Q3 

    (a)                                    (b)                                (c) 

Original image 
 
 
 
 
 
Superpixel boundaries overlaid 
on the original image 
 
 
 

 
Object in ROI cluster 
 
 
 
 
Superpixel mask over the 
original image 
 
 
 
Binary masking result of 6th 
watershed transformation 
 
 
 
Segmented lettuce 
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represents the threshold for head development to harvest the growth stage. The number of leaves is 
characterized by low weight in determining the growth stage as each Rockwool is planted with four 
lettuce seeds, and in the biological process of the plant, several seeds do not grow up to the genetically 
required number of leaves. Moreover, some lettuce experiences leaf diseases that frees some of its leaves 
from the stem during the development. However, biomass area and perimeter and biomass convex hull 
area and the perimeter are characterized as strong determinants in classifying lettuce growth stage.  

Table 2.  Descriptive statistics of phytomorphological features 

Feature Mean 
SE 

Mean 
Std. Dev Min. Q1 Median Q3 Max. 

No. of leaves 3.3800 0.0782 1.3546 1.0000 2.0000 3.0000 4.0000 9.0000 

Biomass perimeter 9046 458 7925 660 2227 6796 13927 37800 

Biomass area 1312979 98930 1713512 16741 127533 519330 1879725 8310300 

Convex area 2099381 154233 2671388 22917 172098 870540 3289225 12965000 

Convex hull area 2092241 153882 2665318 764 172098 870540 3178375 12965000 

Biomass convex hull 
perimeter 

4716 204 3534 498 1675 3797 7149 14744 

Biomas compactness 0.016452 0.000642 0.011114 0.000013 0.008480 0.013372 0.020919 0.067303 

Biomass solidity 1.140 0.273 4.732 0.002 0.560 0.636 0.732 52.587 

Biomass convexity 1.7745 0.0280 0.4843 1.0122 1.4319 1.7024 2.0287 4.6876 

Dominant leaf major 
axis length 

1625 375 6489 197 647 1111 1775 112720 

Biomass major axis 
length 

1843.7 84.7 1466.2 196.9 668.9 1434.3 2690.4 7026.4 

Biomass minor axis 
length 

930.5 41.7 722.4 76.7 319.1 718.0 1381.9 3201.8 

Length of biomass 
skeleton 

23738 17802 308340 192 666 1353 2728 5151600 

Length of 
skeleton/perimeter 

1.595 0.967 16.751 0.001 0.173 0.225 0.279 221.670 

3.3. Optimized machine learning models 

Fig. 9 shows the normal discriminants of LDA based on biomass perimeter and biomass area, and 

biomass area and biomass minor axis length. The developed LDA model used 10-fold stratified cross-
validation instead of 3 to avoid overfitting which may result in poor classification performance. As seen 

in Fig. 9, the optimized LDA linearly separates three classes based on Bayes theorem.  

 

Fig. 9.  Classification of lettuce growth stage using LDA 
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Fig. 10 shows the train, validation, and test performance curves of the optimized neural network 

with a cross-entropy value of 0.069754, indicating good network characteristics. The developed model 

adaptively converged on epoch 39, making the network suitable for classification based on inputted 

training data's learned characteristics. Cross-entropy, regression coefficient, and learning time are the 
concerned network parameters in determining the least computational neural network. Based on cross-

entropy, the 50 hidden artificial neurons performed best by having a CE value of 0.047175 and is 

followed by hidden artificial neurons of 20 with CE of 0.069754. Based on the regression coefficient, 

the 900, 90, and 20 hidden artificial neurons performed best with values of 0.8626, 0.84802, and 
0.84713, respectively. Based on learning time, 10 and 20 hidden artificial neurons performed best with 

values of 1.05 s and 2 s, respectively. Thus, making the 20 hidden artificial neurons most considerable 

to perform the least computational cost for classification.  

Fig. 11 shows the quadratic support vector machine's discrimination on phytomorphological data 
of biomass perimeter and area, and biomass area and minor axis length. Quadratic curves are used to 

separate each class that is shown in different colors. The blue dots represent the phytomorphological 

characteristics of vegetative lettuce, red dots represent the lettuce under head development stage and 

orange dots represent the lettuce ready for harvest. As shown in Fig. 9, Fig. 10, and Fig. 11, the 
classification performance increased by adjusting its hyperparameters or determinant variables for all 

the developed machine learning models. 

 

Fig. 10. Optimized neural network (a) performance plot of developed 3-layer ANN with 20 hidden artificial 

neurons (b) network performance determinants 

 

Fig. 11. Classification of lettuce growth stage using QSVM 

(a)            (b)                                                                           
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3.4. Lettuce growth stage identification 

By using the three optimized machine learning models, Table 3 presents the classification scores on 
each lettuce growth stage during the testing phase. For the vegetative growth stage, ANN is the only 
machine learning model, which misclassified to the given set of 14-column phytomorphological data 
with a negative score of 4. The ANN model also misclassified the head development data set twice as 
harvest data set, and the same with for harvest data set. The LDA model perfectly classified the vegetative 
data set but attained the highest misclassification rate for the harvest growth stage with a 
misclassification score of 7 out of 18. On the other hand, QSVM perfectly classified the vegetative data 
set and performed the lowest misclassification score of 2 out of 18 for the harvest growth stage. The 
three models easily classified vegetative lettuce due to the significant difference of phytomorphological 
numerical values as this stage only resembles the seed leaf and the lettuce 2-true-leaves stage.  

Table 3.  Classification scores for the testing phase resulted from using the optimized machine learning models 

Model 
Correct Incorrect 

Vegetative 
Head 

Development 
Harvest Vegetative 

Head 
Development 

Harvest 

LDA 12 25 11 0 5 7 
ANN 8 28 16 4 2 2 

QSVM 12 25 16 0 5 2 

 

Table 4 shows the listing of the training and testing accuracy characterized by each optimized machine 
learning model. The ANN model was performed as the most accurate model during the training phase, 
with 90.00% correct classification of lettuce growth stages out of 240 samples. Even though all models 
meet the desired 80% and above accuracy during the training phase, the LDA model failed to maintain 
it during the testing phase resulting in 60.00%. The ANN model is still above the desired 80% accuracy 
during the testing phase but is diminished by 5%. However, the QSVM even has higher accuracy during 
the testing phase, resulting in 88.33%, making it the best-optimized machine learning model. This 
model is consistent in providing correct classifications supported by its performance and accuracy. The 
SVM is not overfitted due to the configuration of 10-fold stratified cross-validation.  

Table 4.  Accuracy performance of lettuce growth stage classification models using machine learning 

Model Splitting 

Training Testing Using Optimized Model 

No. of 
Samples 

Accuracy 
No. of 
Samples 

Correct Incorrect Accuracy 

LDA 80-20 240 80.42% 60 48 12 60.00% 

ANN 80-20 240 90.00% 60 51 9 85.00% 

QSVM 80-20 240 87.90% 60 53 7 88.33% 

 

Summarized in Table 5 is the comparison of the three models, LDA, ANN, and QSVM, in terms of 
accuracy, precision, recall, and f1-score. The models were trained by adjusting their respective 
hyperparameters, such as adding neurons in ANN's stand. It can be seen from the above-presented table 
that all models exhibit consistency from unoptimized state to the optimized state. This entails the none 
of the models demonstrates overfitting.  

Table 5.  Algorithm comparison based on selected evaluation metrics 

Model 
Unoptimized Model Optimized Model 

Accuracy Precision Recall f1-score Accuracy Precision Recall f1-score 

LDA 80.42% 73.68% 65.12% 69.14% 60.00% 80.00% 88.89% 84.21% 

ANN 90.00% 84.44% 71.70% 77.55% 85.00% 85.00% 92.73% 88.70% 

QSVM 87.90% 57.50% 60.53% 58.97% 88.33% 88.33% 94.64% 91.38% 
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4. Conclusion 

Different algorithms for classifying lettuce growth stages into vegetative, head development and for 
harvest using the combinations of color SLIC superpixels and 6-fold watershed transformation and 
machine learning models are proposed in this paper. Based on the results of image ROI segmentation, 
the methodology attained enhanced segmentation of lettuce plant and background pixels separately. Ten 
phytomorphological features were geometrically extracted, namely, number of leaves, biomass area and 
perimeter, convex area, convex hull (CH) area and perimeter, major, and minor axis length of the 
biomass, major axis length of the dominant leaf, length of plant skeleton. Additional four 
phytomorphological profile indices were computed out of the extracted features, namely, biomass 
compactness, convexity, solidity, and plant skeleton, and perimeter ratio. The optimized LDA model is 
very unstable, as its accuracy diminished by more than 20% during the testing phase. The 3-layer ANN 
model with 20 hidden artificial neurons registered the highest accuracy of 90% during the training phase, 
but the optimized QSVM is considered as the most stable model with 87.90% and 88.33% training and 
testing accuracy, respectively. Thus, making QSVM the best machine learning model to implement 
lettuce growth stage classification based on phytomorphological features. Optimizing these machine 
learning models increased the accuracy of QSVM classification by 0.43%. On the other hand, there is a 
significant decrease in classification accuracy in LDA and ANN models: -20.42% and -5%, respectively. 
QVSM is the most consistent model from unoptimized to optimized state based on accuracy, precision, 
recall, and f1-score. This enhancement of QSVM provides greater integrity in identifying the correct 
lettuce life cycle stage. Future works include the further segmentation of leaves from the stem and the 
introduction of feature reduction to optimize computational time. Moreover, an additional image set 
must be used to increase the accuracy of the system further.   
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